GROUP PURSUIT UNDER BOUNDED EVADER COORDINATES*

A.A. CHIKRII

Effective methods are proposed for solving the group pursuit problem with constraints on the evadex's state. The paper is closely related to the investigations in $/ 1-$ 4/ (**) and is a development of the results in $/ 5 /$ in the case of arbitrary linear equations of motion of the evader.

1. Given the differential game

$$
\begin{equation*}
z_{i}^{*}=A_{i} z_{i}+\varphi_{i}\left(u_{i}, v\right), \quad z_{i} \in E^{n_{i}}, \quad u_{i} \in U_{i}, v \in V, i \in N_{m}=\{1, \ldots, m\} \tag{1.1}
\end{equation*}
$$

where $E^{n_{i}}$ is a finite-dimensional Euclidean space, A_{i} are square matrices of order n_{i}, U_{i}, V are nonempty compacta, the functions $\varphi_{i}\left(u_{i}, v\right)$ are continuous along variables collection. The terminal set M consists of sets $M_{i}{ }^{*}, i \in N_{m}$, of form $M_{i}{ }^{*}=M_{i}{ }^{\circ}+M_{i}$, where M_{i}° are linear subspaces of $E^{n_{i}}$, while M_{i} are closed convex sets from the orthogonal complements L_{i} to M_{i} o in space $E^{n_{i}}$, and for $i \in N_{m} \backslash N_{k}, k \leqslant m, M_{i}=\left\{a_{i}\right\}, a_{i}$ is some vector from L_{i}. Game (1.1) is considered ended if for some $t>0$ we have $z_{i}(t) \in M_{i}{ }^{*}$ for at least one i :

We say that the differential game (1.1) can be ended from a prescribed position $z^{\circ}=\left(z_{1}{ }^{\circ}\right.$, \ldots, z_{m}) no later than by the time $T=T\left(z^{\circ}\right)$ if measurable functions $u_{i}(t)=u_{i}\left(z_{i}{ }^{\circ}, v(t)\right) \in U_{i}$, $t \in[0, T]$, exist such that the solutions of the equations

$$
z_{i}{ }^{0}=A_{i} z_{i}+\varphi_{i}\left(u_{i}(t), \quad v(t)\right), \quad z_{i}(0)=z_{i}^{0}, \quad i \in N_{m}
$$

for some $i=i(v(\cdot))$, hit onto set M_{i} no later than at the instant $t=T$ for any measurable functions $v(\cdot)=\{v(t): v(t) \in V, t \in\{0, T]\}$. Here the pursuers can use not only the instantaneous values of the evader's control but also the entire previous history $v(s), s \in[0, t]$.
2. Let π_{i} be the operator of orthogonal projection from $E^{m_{i}}$ onto a subspace L_{i}. Consider the many-valued mappings

$$
\begin{aligned}
& \Phi_{i}(t, v)=\pi_{i} \exp \left(t A_{i}\right) \varphi_{i}\left(U_{i}, \varepsilon_{i}(t) v\right) . \\
& \Phi_{i}(t)=\bigcap_{v \in V} \Phi_{i}(i, v), \quad i \in N_{k}, \quad t \geqslant 0
\end{aligned}
$$

where $\exp \left(t A_{i}\right)$ is the fundamental matrix of the system $z_{i}^{*}=A_{i} z_{i}$, and $\varepsilon_{i}(t)$ are certain measurable functions taking values from the interval. $/ 0,1 /$. Let measurable functions $\varepsilon_{i}(t), i \in$ N_{k}, and a number $T_{0}>0, \varepsilon_{i}(t) \in[0,1], t \in\left[0, T_{0}\right]$, exist such that the following conditions are fulfilled.

Condition 1. The sets $\Phi_{i}(t)$ are nonempty for all $i \in N_{h}, T_{0} \geqslant t \geqslant 0$. We set

$$
\varphi_{i}^{*}\left(t, u_{i}, v\right)=\varphi_{i}\left(u_{i}, v\right)-\varphi_{i}\left(u_{i}, \varepsilon_{i}(t) v\right)
$$

Condition 2. The sets

$$
W_{i}(t)=M_{i} * \int_{0}^{ \pm} \pi_{i} \exp \left((t-\tau) A_{i}\right) \varphi_{i}^{*}\left(t-\tau, U_{i}, V\right) d \tau
$$

are nonempty for all $i \in N_{k}, T_{0} \geqslant t>0$ (* is the operation of geometric subtraction of sets /6/).

Having fixed certain measurable selectors $\varphi_{t}(t) \in \Phi_{i}(t)$, we set

$$
\xi_{1}\left(t, z_{i}\right)=\pi_{i} \exp \left(t A_{i}\right) z_{i}+\int_{0}^{t} \varphi_{i}(t-\tau) d \tau, \quad i \in N_{k}, \quad t \in\left[0, r_{0}\right]
$$

[^0]and denote
\[

$$
\begin{align*}
& \alpha_{i}\left(t, \tau, z_{i}, v\right)=\left\{\begin{array}{c}
\max \left(\alpha \geqslant 0:\left\{\Phi_{i}(t-\tau, v)-\varphi_{i}(t-\tau)\right\} \cap\right. \\
\left.\left\{\alpha\left(W_{i}(t)-\xi_{i}\left(t, z_{i}\right)\right)\right\} \neq \varnothing\right), \xi_{i}\left(t, z_{i}\right) \equiv W_{i}(t) \\
t^{-1}, \quad \xi_{i}\left(t, z_{i}\right) \in W_{i}(t)
\end{array}\right. \tag{2.1}\\
& i \in N_{k}, T_{0} \geqslant t \geqslant \tau>0, v \in V
\end{align*}
$$
\]

Lemma 1. Let Conditions 1 and 2 be fulfilled, the mappings $\varphi_{i}\left(U_{i}, \varepsilon_{i}(t) v\right)$ be convexvalued, $\varphi_{i}(t)$ be a measurable selector of mapping $\Phi_{i}(t), v \in V$. Then, if $\xi_{i}\left(t, z_{i}\right) \equiv W_{i}(t)$, then

$$
\begin{equation*}
\alpha_{i}\left(t, \tau, z_{i}, v\right)=\inf _{p \in P_{i}\left(t, z_{i}\right)}\left\{C_{\Phi_{i}(t-\tau, v)}(-p)+\left(p, \varphi_{i}(t-\tau)\right)\right\}, \tag{2.2}
\end{equation*}
$$

$$
T_{0} \geqslant t \geqslant \tau \geqslant 0, \quad i \in N_{k}
$$

where $P_{i}\left(t, z_{i}\right)=\left\{p \in L_{i}:-C_{W_{i}(t)}(p)+\left(p, \xi_{i}\left(t, z_{i}\right)\right)=1\right\}$, and $C_{\Phi_{i}(t, v)}(p), C_{W_{i}(t)}(p)$ are the support functions of the corresponding sets.

Proof. From Condition 1 follows the inclusion

$$
0 \cong \Phi_{i}(t-\tau, v)-\Phi_{i}(t-\tau)
$$

for all $v \in V, T_{0} \geqslant t \geqslant \tau \geqslant 0$, which is equivalent to the inequality

$$
\begin{equation*}
c_{\Phi_{i}(t-\tau, v)}(-p)+\left(p_{i} ; \Phi_{i}(t-\tau)\right) \geqslant 0 \quad \forall_{p} \in L_{i} \tag{2.3}
\end{equation*}
$$

From the property of the geometric subtraction operation it follows that the mapping $W_{i}(t)$ is convex-valued /6/. The emptiness of the intersection in expression (2.1) is equivalent to the inequality /7/

$$
C_{\Phi_{i}(t-\tau, v)}(-p)+\left(p, \Phi_{i}(t-\tau)\right) \geqslant \alpha\left(\left(p, \xi_{i}\left(t, z_{i}\right)\right)-C_{W_{i}(t)}(p)\right) \quad \forall_{p} \in L_{i}
$$

When $\left(p, \xi_{i}\left(t, z_{i}\right)\right)-C_{W_{i}(t)}(p) \leqslant 0$ the last inequality is fulfilled for any nonnegative α since (2.3) holds. If, however, $\left(p, \xi_{i}\left(t, z_{i}\right)\right)-C_{W_{i}(t)}(p)>0$, then, having set $\left(p, \xi_{i}(t, z)\right)-C_{W_{i}(t)}(p)=1$, we obtain

$$
C_{\Phi_{i}(t-\tau, v)}(-p)+\left(p, \varphi_{i}(t-\tau)\right) \geqslant \alpha
$$

Hence follows formula (2.2). The following condition is assumed fulfilled for $i \in N_{m} \backslash N_{k}$
Condition 3. The sets $\pi_{i} \exp \left(t A_{i}\right) \varphi_{i}\left(U_{i}, v\right), i \in N_{m} \backslash N_{k}$, consist of unique points $\varphi_{i}(t, v)$ for fixed $t, v, T_{0} \geqslant t \geqslant 0, v \in V$. For $i \models N_{m} \backslash N_{k}$ we set

$$
\begin{align*}
& \xi_{i}\left(t, z_{i}\right)=\pi_{i} \exp \left(t A_{i}\right) z_{i} \tag{2.4}\\
& \alpha_{i}\left(t, \tau, z_{i}, v\right)=\left\{\begin{array}{l}
\alpha: \alpha\left(a_{i}-\xi_{i}\left(t, z_{i}\right)\right)=\varphi_{i}(t-\tau, v), \quad a_{i} \neq \xi_{i}\left(t, z_{i}\right) \\
\left\|\varphi_{i}(t-\tau, v)\right\|+t^{-1}, \quad a_{i}=\xi_{i}\left(t, z_{i}\right)
\end{array}\right. \\
& T_{0} \geqslant t \geqslant \tau>0, \quad v \in V
\end{align*}
$$

We denote

$$
\begin{aligned}
& \lambda(t, z)=1-\inf \max _{\alpha \cdot(i) N_{m}} \int_{0}^{t} \alpha_{i}\left(t, \tau, z_{i}, v(\tau)\right) d \tau \\
& T(z)=\{t>0: \lambda(t, z)=0\}
\end{aligned}
$$

where $v(\cdot)$ is a function measurable on the interval $[0, t]$ taking values from set V.
Theorem 1. Let Conditions $1-3$ be fulfilled for differential game (1.1) and let $T\left(z^{\circ}\right)$ $\leqslant T_{0}$. Then from a prescribed initial position z° it can be ended no later than by time $T\left(z^{\circ}\right)$.

Proof. Let $v(\tau), v(\tau) \in V, \tau \in[0, T], T=T\left(z^{\circ}\right)$ be some measurable function. We set

$$
h\left(T, t, z^{0}, v(\cdot)\right)=1-\max \left\{\max _{i \in N_{k}} \int_{0}^{t} \alpha_{i}\left(T, \tau, z_{i}^{\circ}, v(\tau)\right) d \tau, \max _{i \in N_{n i} \backslash N_{k}} \int_{0}^{t} \alpha_{i}\left(t, \tau, z_{i}^{0}, v(\tau)\right) d \tau\right\}
$$

Since $h\left(T, 0, z^{\circ}, v(\cdot)\right)=1$, while for $i \in N_{m} \backslash N_{k}, a_{i} \neq \xi_{i}\left(t, z_{i}{ }^{\circ}\right)$ the function $\alpha_{i}\left(t, \tau, z_{i}, v\right)$ depends continuously on t, we have that $h\left(T, t, z^{\circ}, v(\cdot)\right)$ depends continuously on t and from the definition of function $\lambda(t, z)$ it follows that an instant $t_{*}, 0<t_{*} \leqslant T$, exists such that $h\left(T, t_{*}\right.$, $v(\cdot))=0$.

Let us indicate a method for choosing the controls for $i \in N_{k}$. Let $\xi_{i}\left(T, z_{i}{ }^{\circ}\right) \equiv W_{i}(T)$. Then for $0 \leqslant \tau<t_{*}$ we choose the control $u_{i}(\tau) \in U_{i}$ and the function $x_{i}(\tau) \in W_{i}(T)$ from the equation

$$
\begin{aligned}
& \pi_{i} \exp \left((T-\tau) A_{i}\right) \varphi_{i}\left(U_{i}(\tau), \varepsilon_{i}(T-\tau) v(\tau)\right)-\varphi_{i}(T-\tau)= \\
& \quad-\alpha_{i}\left(T, \tau, z_{i}^{\circ}, v(\tau)\right)\left(x_{i}(\tau)-\xi_{i}\left(T, z_{i}^{\circ}\right)\right)
\end{aligned}
$$

The function $\alpha_{i}\left(T, \tau, z_{i}{ }^{0}, v(\tau)\right.$ is measurable in τ; therefore, on the strength of the FilippovCastaing theorem /8/, the solvability of Eq, (2.5) in the class of measurable functions $u_{i}(\tau)$, $x_{i}(\tau), 0 \leqslant \tau<t_{*}$ follows from Conditions 1 and 2 . For $t_{*} \leqslant \tau \leqslant T$ we set $\alpha_{i}\left(T, \tau, z_{i}{ }^{\circ}, v\right) \equiv 0$ and we choose the control $u_{i}(\tau)$ from the resulting Eq. (2.5). If $\xi_{i}\left(T, z_{i}{ }^{\circ}\right) \in W_{i}(T)$ then we set $x_{i}(\tau) \equiv \xi_{i}\left(T, x_{i}{ }^{\circ}\right.$) and we choose the control $u_{i}(\tau)$ from Eq. (2.5) with a zero right-hand side. The representation

$$
\begin{align*}
& \pi_{i} \pi_{i}(t)=\pi_{i} \exp \left(t A_{i}\right) z_{i}^{0}+\int_{0}^{i} \pi_{i} \exp \left((t-\tau) A_{i}\right) \varphi_{i}\left(n_{i}(\tau), v(\tau)\right) d \tau \tag{2.6}\\
& i \in N_{m}
\end{align*}
$$

follows from the Cauchy formula. If $h\left(T, t_{*}, z^{\circ}, v(\cdot)\right)=0$, then a number j exists such that one of the following equalities is fulfilled:

$$
\begin{align*}
& 1-\int_{0}^{t_{*}} \alpha_{j}\left(T, \tau, z_{j}, v(\tau)\right) d \tau=0, \quad j \in N_{k} \tag{2.7}\\
& 1-\int_{0}^{t_{*}^{*}} \alpha_{j}\left(t_{*,} \tau_{1} z_{j}, v(\tau)\right) d \tau=0, \quad j \in N_{m} \backslash N_{k} \tag{2.8}
\end{align*}
$$

Let $j \in N_{k}$. Then, by adding and subtracting the quantities

$$
\int_{j}^{T} \pi_{j} \exp \left((T-\tau) A_{j}\right) \varphi_{j}\left(u_{j}(\tau), \varepsilon_{j}(T-\tau) v(\tau)\right) d \tau, \int_{j}^{T} \varphi_{j}(T-\tau) d \tau
$$

from both sides of equality (2.6) with $i=j, t=T$, as well as taking into account the control selection law, we obtain

$$
\begin{aligned}
& \pi_{j} z_{j}(T)=\xi_{j}\left(T, z_{j}^{j}\right)\left(1-\int_{0}^{T} a_{j}\left(T, \tau, z_{j}^{0}, v(\tau)\right) d \tau\right)+ \\
& \int_{0}^{T} a_{j}\left(T, \tau, z_{j}, v(\tau)\right) x_{j}(\tau) d \tau+ \\
& \int_{0}^{T} \pi_{j} \exp \left((T-\tau) A_{j}\right) \varphi_{j}^{*}\left(T-\tau, u_{j}(\tau), v(\tau)\right) d \tau
\end{aligned}
$$

Hence with due regard to formulas (2.5), (2.7), to the convex-valuedness of mapping $W_{j}(T)$ and to the property of the geometric subtraction operation, we obtain $\pi_{j} z_{j}(T) \in M_{j}$. Let $j \in$ $N_{m} \backslash N_{k}$. Let us consider the case when $a_{j} \neq \xi_{j}\left(t_{*}, z_{j}{ }^{j}\right)$. By virtue of equality (2.8) and Condition 3, from (2.4) we have

$$
a_{f}-\xi_{j}\left(t_{* i} z_{j}^{\sigma}\right)-\int^{t_{*}} \varphi_{i}\left(t_{*}-\tau, v(\tau)\right) d \tau=0
$$

or $a_{j}=\pi j_{j}\left(t_{*}\right)$. If $a_{j}=\xi_{j}\left(t_{*}, z_{j}\right)$, then from equality (2.8) we obtain

$$
\int_{0}^{t_{*}}\left\|\varphi_{j}(t-\tau, v(\tau))\right\| d \tau=0 \text { or } \int_{0}^{t_{*}} \varphi_{j}\left(t_{*}-\tau, v(\tau)\right) d \tau=0
$$

Hence with due regard to the initial assumption and to formula (2.6) we obtain $a_{j}=\pi_{j} \tilde{j}_{j}\left(t_{*}\right)$.
3. We fix certain measurable selectors $x_{i}(t)$ of the many-valued mappings $W_{i}(t), i \in N_{\mathrm{t}}, t \in$ $\left[0, T_{0}\right]$ and we set

We denote

$$
\eta_{i}\left(t, z_{i}\right)=\xi_{i}\left(t, z_{i}\right)-x_{i}(t)
$$

$$
\begin{aligned}
& \beta_{i}\left(t, \tau, z_{i}, v\right)=\left\{\begin{array}{c}
\max \left(\beta>0:-\beta \eta_{i}\left(t, z_{i}\right) \in \Phi_{i}(t-\tau, v)-\right. \\
\left.\varphi_{i}(t-\tau)\right), \quad \eta_{i}\left(t, z_{i}\right) \neq 0 \\
t, \quad \eta_{i}\left(t, z_{i}\right)=0
\end{array}\right. \\
& i \in N_{k}, T_{0} \geqslant t \geqslant \tau>0, v \in V
\end{aligned}
$$

Lemma 2. Let Conditions 1 and 2 be fulfilled, the mappings $\varphi_{i}\left(U_{i}, \varepsilon_{i}(t) v\right)$ be convexvalued, $\varphi_{i}(t)$ and $x_{i}(t)$ be measurable selectors of mappings $\Phi_{i}(t)$ and $W_{i}(t)$, respectively. Then, if $\eta_{i}\left(t, z_{i}\right) \neq 0$, then

$$
\begin{aligned}
& \beta_{i}\left(t, \tau, z_{i}, v\right)=\inf _{\substack{p \in L_{i} \\
\left(p, \eta_{i}\left(t, z_{i}\right)=1\right.}}\left\{C_{\Phi_{i}(t-\tau, v)}(-p)+\left(p, \varphi_{i}(t-\tau)\right)\right\}, \\
& i \in N_{k}, T_{0} \geqslant t \geqslant \tau>0, v \in V
\end{aligned}
$$

The proof is analogous to that of Lemma 1.
For $i \in N_{m} \backslash N_{k}$ we set $\xi_{i}\left(t, z_{i}\right) \equiv \eta_{i}\left(t, z_{i}\right), \beta_{i}\left(t, \tau, z_{i}, v\right) \equiv \alpha_{i}\left(t, \tau, z_{i}, v\right)$. We denote

$$
\begin{aligned}
& \mu(t, z)=1-\inf _{v(\cdot)} \max _{i \in N_{m 0}}^{t} \int_{i}\left(t, \tau, z_{i}, v(\tau)\right) d \tau \\
& \Theta(z)=\{t>0: \mu(t, z)=0\}
\end{aligned}
$$

Theorem 2. Let Conditions $1-3$ be fulfilled for the differential game (1.1) and let $\theta\left(z^{\circ}\right) \leqslant T_{0}$. Then from a prescribed initial position z° it can be ended no later than by time $\theta\left(\mathbf{2}^{\circ}\right)$.

The proof is carried out by the scheme used to prove Theorem 1.
4. Let $\omega_{i}(t, \tau), i \in N_{n}, t \geqslant \tau \geqslant 0$, be certain numerical functions. We consider the manyvalued mappings

$$
\begin{aligned}
& F_{i}\left(t, \tau, U_{i}, v\right)=\Phi_{i}(t-\tau, v)-\omega_{i}(t, \tau) W_{i}(t) \\
& F_{i}(t, \tau)=\bigcap_{v \in V} F_{i}\left(t, \tau, U_{i}, v\right), \quad t \geqslant \tau \geqslant 0, \quad i \in N_{k}
\end{aligned}
$$

Let measurable functions $e_{i}(t) \in[0,1]$, measurable nonnegative functions $\omega_{i}(t, \tau)$ and a number $T_{0}, i \in N_{k}, T_{0} \geqslant t \geqslant \tau \geqslant 0$, exist so as to fulfil the following condition:

Condition 4. The sets $F_{i}(t, \tau)$ are nonempty for all $i \in N_{k}, T_{0} \geqslant t \geqslant \tau \geqslant 0$.
We fix certain measurable selectors $f_{i}(t, \tau)$ of mappings $F_{i}(t, \tau)$ and we set

$$
\zeta_{i}\left(t, z_{i}\right)=\pi_{i} \exp \left(t A_{i}\right) z_{i}+\int_{0}^{t} f_{i}(t, \tau) d \tau
$$

We denote

$$
\begin{aligned}
& \gamma_{i}\left(t, \tau, z_{i}, v\right)=\left\{\begin{array}{l}
\max \left(\gamma \geqslant 0:-\gamma \zeta_{i}\left(t, z_{i}\right) \in F_{i}\left(t, \tau, U_{i}, v\right)-f_{i}(t, \tau)\right) \\
\zeta_{i}\left(t, z_{i}\right) \neq 0
\end{array}\right. \\
& i \in N_{k}, \quad T_{0} \geqslant t \geqslant \tau>0, \quad v \in V
\end{aligned}
$$

Lemma 3. Let Conditions 2 and 4 be fulfilled, mappings $\varphi_{i}\left(U_{i}, \varepsilon_{i}(t) v\right)$ be convex-valued, $f_{i}(t, \tau)$ be a measurable selector of mapping $F_{i}(t, \tau)$. Then, if $\xi_{i}\left(t, z_{i}\right) \neq 0$, then

$$
\begin{gathered}
\gamma_{i}\left(t, \tau, z_{i}, v\right)=\inf _{\substack{p \in L_{i} \\
\left(p, i_{i} \\
\left(t x_{i}\right)=1\right.}} \quad\left(C_{\Phi_{i}(t-\tau, v)}(-p)+\left(p, f_{i}(t, \tau)\right)+\right. \\
\left.\omega_{i}(t, \tau) C_{W_{i}(t)}(-p)\right\} \quad i \in N_{k}, T_{0} \geqslant t \geqslant \tau>0, v \in V
\end{gathered}
$$

The proof is analogous to that of Lemma 1.
For $\quad i \in N_{m} \backslash N_{k}$ we set $\zeta_{i}\left(t, z_{i}\right) \equiv \xi_{i}\left(t, z_{i}\right), \gamma_{i}\left(t, \tau, z_{i}, v\right) \equiv \alpha_{i}\left(t, \tau, z_{i}, v\right)$. We denote

$$
\begin{aligned}
& v(t, z)=1-\inf _{v(\cdot)} \max _{i \in N_{m}} \int_{0}^{t} \gamma_{i}\left(t, \tau, z_{i}, v(\tau)\right) d \tau \\
& \Gamma(z)=\{t>0: v(t, z)=0\}
\end{aligned}
$$

Theorem 3. Let Conditions 2-4 be fulfilled for the differential game (2.1) and let $T=\Gamma\left(z^{\circ}\right) \leqslant T_{0}$ and

$$
\int_{0}^{T} \omega_{1}(T, \tau) d \tau=1, \quad i \in N_{k}
$$

Then from a prescribed initial position z° it can be ended no later than by time $\Gamma\left(z^{\circ}\right)$. The proof is based on the ideas used to prove Theorem 1.
5. Let $k=m=1$. In all notation we omit the indices and we set $\varepsilon(t) \equiv 1$. Let us establish the connection between the pursuit plans presented in Sects. 2-4 and Pontriagin's first direct method /6/.

Corollary 1. Let Condition 1 be fulfilled. Then in order that

$$
\pi \exp (t A) z \in M-\int_{0}^{t} \Phi(t-\tau) d \tau
$$

it is necessary and sufficient that a measurable selector $\varphi(\tau) \in \Phi(\tau), \tau \in[0, t]$, exist such that $\xi(t, z) \in M$.

From Corollary 1 it follows, in particular, that

$$
\begin{aligned}
& T(z) \leqslant \Pi(z) \\
& \Pi(z)=\left\{t>0: \pi \exp (t A) z \in M-\int_{0}^{t} \Phi(t-\tau) d \tau\right\}
\end{aligned}
$$

Corollary 2. Let Condition 1 be fulfilled. Then in order that

$$
\left\{\pi \exp (t A) z+\int_{0}^{i} \Phi(t-\tau) d \tau\right\} \cap M \neq \varnothing
$$

it is necessary and sufficient that a measurable selector $\varphi(\tau) \in \Phi(\tau), \tau \in[0$, $t]$ and a vector $m \models M$ exist such that $\eta(t, z)=0$.

Corollary 3. Let Condition 4 be fulfilled. Then in order that

$$
\begin{equation*}
-\pi \exp (t A) z \in \int_{0}^{t} F(t, \tau) d \tau \tag{5.1}
\end{equation*}
$$

it is necessary and sufficient that a measurable selector $f(t, \tau) \in F(t, \tau), \tau \in[0, t]$, exist such that $\zeta(t, z)=0$. If furthermore

$$
\int_{0}^{t} \omega(t, \tau) d \tau=1
$$

then the pursuit can be ended in time $t=t(2)$ prescribed by inclusion (5.1) from the initial position z.

The proofs of Corollaries 1-3 follow from the constructions in sects.2-4. Thus, the plans in Sects. 2 and 3 can, in particular, coincide with Pontriagin'sfirst direct method, while the plan in Sect. 4 leads to a certain modification of it.
6. Let us consider the problem of pursuing an evader by a group of controlled objects. in the situation when the evader cannot leave the confines of some open convex set, and let us show that it is a special case of differential game (1.1). The motions of the pursuers and the evader have the form

$$
\begin{align*}
x_{i}^{*} & =C_{i} x_{i}+u_{i}, \quad u_{i} \in U_{i}, \quad x_{i} \in E^{r_{i}}, \quad i \in N_{k} \tag{6.1}\\
y^{*} & =B y+v, \quad v \in V, \quad y \in E^{:}
\end{align*}
$$

where certain coordinates of the evader are constrained:

$$
\begin{equation*}
G=\left\{y:\left(p_{i}, y\right)<l_{i},\left\|p_{i}\right\|=1, i \in N_{m} \backslash N_{k}\right\} \tag{6.2}
\end{equation*}
$$

The sets $M_{i}{ }^{*}, i \in N_{k}$, are prescribed just as in game (1.1), in the spaces $E^{n_{i}}=E^{r_{i}} \times E^{*}$. The pursuit process is considered ended if at least one of the pursuers catches the evader (\{x, $y\}$ $\in M_{i}^{*} \quad$ for some $\left.i \in N_{h}\right)$ or if the evader is forced to violate the constraints $\left(\left(p_{i}, y\right)=l_{i}\right.$ for some $i \in N_{m} \backslash N_{k}$). We set

$$
\begin{aligned}
& z_{i}=\left\{x_{i}, y\right\}, \quad A_{i}=\left\|\begin{array}{cc}
C_{i} & 0 \\
0 & B
\end{array}\right\|, \quad \varphi_{i}\left(u_{i}, v\right)=\left\|\begin{array}{l}
u_{i} \\
0
\end{array}\right\|+\left\|\begin{array}{l}
0 \\
v
\end{array}\right\|, \quad i \in N_{k} \\
& z_{i}=y, \quad A_{i}=B, \quad \varphi_{i}\left(u_{i}, \quad v\right)=v \\
& M_{i}^{\circ}=\left\{z_{i}: \quad\left(p_{i}, \quad z_{i}\right)=0\right\}, \quad a_{i}=l_{i} p_{i}, \quad i \in N_{m} \backslash N_{k}
\end{aligned}
$$

By the same token the group pursuit problem (6.1) with constraints (6.2)is reduced to a constraint free
problem of forn (1.1). Such a reduction was used in /5/; an analogous method was applied earlier in /9/ for an escape problem. The very rigid Condition 2 was present in $/ 5 \%$, reducing the analysis essentially to a simple motion of the evader. Condition 3 , replacing it, is fulfilled automatically.
7. Example 1. The pursuers and the evader move in accord with the equations

$$
\begin{aligned}
& x_{i}^{*}=a x_{i}+u_{i},\left\|u_{i}\right\| \leqslant 1, t \in \dot{N}_{k}, x_{i} \in E^{\prime} \\
& y^{\prime}=a y+v,\|v\| \leqslant 1, y \in E^{*}
\end{aligned}
$$

The set M_{i} consists of points $\left\{x_{i}, y\right\}$, such that $\left\|x_{i}-y\right\| \varepsilon_{i}$. The constraints on the evader's coordinates are

$$
G=\left\{y \in E^{4}:\left(p_{i}, y\right)<h_{i}, p_{i}=E^{\mathbf{s}},\left\|p_{i}\right\|=1_{i}, i \in N_{m} \backslash N_{k}\right\}
$$

We consider various cases.
1°. $a<0, \varepsilon_{i}>0, t \equiv N_{k}$. We apply the plan in Sect. 2. Condition 1 is fulfilled with $\&_{i}(t) \equiv 1$. Having set $\varphi_{i}(t) \equiv 0$, we obtain

$$
\mathrm{s}_{\mathrm{i}}\left(t, s_{i}\right)=\exp (a t) z_{i}, t \otimes N_{k}
$$

Since $a<0$, at the instant

$$
t_{i}^{*}=a^{-1} \cdot \ln \left(\varepsilon_{i} \cdot\left\|x_{i}^{5}\right\|^{-1}\right)
$$

we have $\xi_{i}\left(t, x_{i}\right) \in M_{i}^{*}$. This goal is reached with the aid of the control $t_{i}(t)=v(\tau), \tau \in\left[0, t_{i}^{*}\right]$. Here the time $t_{i}{ }^{*}$ coincides with the Pontriagin time by virtue of corollary 1 . Thus, each of the pursuers independently catch the evader in finite time from any initial positions, even without constraints (6.2).
2°. $a<0, e_{i}=0, i \in N_{k}$. From the method of invariant subspaces $/ 10 /$ it follows that the evader can avoid capture in the case of one pursuer and without constraints. By virtue of Lemma I we have

$$
\begin{aligned}
& \alpha_{i}\left(i, \tau, z_{i}^{0}, v\right)=\exp (-\tau a) \alpha_{i}\left(z_{i}^{0}, v\right) \\
& \alpha_{i}\left(s_{i}^{\circ}, v\right)=\left\|z_{i}^{0}\right\|^{-2}\left(\left(p, z_{i}^{0}\right)+\left[\left(v, z_{i}^{0}\right)^{2}+\left\|z_{i}^{0}\right\|^{2}\left(1-\|v\|^{(j)}\right]^{1 / 2}\right), t \in N_{k}\right. \\
& \alpha_{i}\left(t_{i} \tau_{r} z_{i}^{0}, v\right)=\frac{\left(p_{i}, \exp (a(t-\tau)) v\right)}{l_{i}-\left(p_{i}, \exp (a t) z_{i}^{0}\right)}, \quad i \in N_{m} \backslash N_{k}
\end{aligned}
$$

Let the phase constraints be a polyhedral cone $\left(4=0, i \in N_{m} \backslash N_{k}\right)$. We denote

$$
\alpha\left(z^{0}\right)=\max _{i \in N_{m}} \min _{p l a i}\left\{\alpha_{i}\left(z_{i}^{0}, v\right), \frac{\left(p_{i}, v\right)}{-\left(p_{i}, z_{i}^{0}\right)}\right\}
$$

Then the condition $\alpha\left(z^{\circ}\right)>0$ is sufficient for completing the group pursuit, and the pursuit time is bounded by the quantity

$$
-a^{-1} \ln \frac{a\left(z^{0}\right)-a}{a\left(s^{0}\right)}
$$

and the pursuers" controls are

$$
\mu_{i}(\tau)=v(\tau)-\alpha_{i}\left(z_{i}{ }^{0}, v(\tau)\right) z_{i}{ }^{0}, i \in N_{k}, \tau \in\left[0, T\left(z^{0}\right)\right]
$$

3°. $a>0, \varepsilon_{i}=0, i \in N_{k}, i_{i}=0, i \in N_{m} \backslash N_{k}$. A sufficient condition for completion of pursuit is the condition $\alpha\left(z^{\circ}\right)>a$, and the pursuit time is bounded by quantity (7.1).

The case of simple motion $(a=0)$ was analyzed in $/ 5 /$.
Example 2. (Pontriagin's check example with equal coefficients of friction). The motions of the pursuers and the evader are described by the equations

$$
\begin{aligned}
& x_{1 i}=x_{2 i}, x_{2 i}=a x_{2 i}+u_{i}, x_{1 i}, x_{2 i} \in E^{i}, z \geq 2,\left\|u_{i}\right\| \leqslant 1, i \boxminus N_{k} \\
& y_{i}^{\prime}=y_{2}, y_{2}=a y_{2}+v, y_{1}, y_{2} \in E^{s},\|v\| \leqslant 1, a<0
\end{aligned}
$$

The set M_{i}^{*} consists of pairs $\left\{x_{1 i}, y_{1}\right\}$, such that $x_{1 i}=y_{1}$. The constraints on the evader's geometric coordinates (y) are of form (6.2). We set

$$
x_{1 i}=x_{1 i}-y_{i} x_{1 i}=x_{i j}-y_{i} i \equiv N_{k}, x_{1 i}=y_{1}, x_{2 i}=y_{i}, i \in N_{m} \backslash N_{k}
$$

We apply the plan in Sect.1. Condition 1 is fulfilled with $\mathrm{s}_{\mathrm{i}}(t) \equiv 1, t \in N_{k}$. Here $\boldsymbol{q}_{1}(t) \equiv 0$, and

$$
\xi_{i}\left(t, z_{i}^{0}\right)=z_{1 i}{ }^{0}+e_{1}(t) z_{a i}{ }^{\circ}, t \in N_{m}
$$

$a_{1}(t)=a^{-1}(1-\exp (-a t)) / 11 /$. On the strength of Lemma I

$$
\begin{aligned}
& \alpha_{i}\left(t, \tau, z_{i}^{\circ}+v\right)=\varepsilon_{1}(t-\tau) \alpha_{i}\left(\xi_{i}\left(t, x_{i}^{0}\right), v\right), \xi_{i}\left(t, z_{i}^{0}\right) \neq 0, i \equiv N_{k} \\
& \alpha_{i}\left(t, \tau, z_{i}^{\circ}, v\right)=\frac{\left(p_{i}, e_{1}(t-v) v\right)}{l_{i}-\left(p_{i}, y_{1}^{2}+e_{1}(t) y_{2}^{\circ}\right)}, \quad \xi_{i}\left(t_{1} z_{i}^{0}\right) \neq l_{i} p_{i}, i \in N_{m} \backslash N_{k}
\end{aligned}
$$

We denote

$$
\begin{aligned}
& z_{i}^{*}=z_{1 i}{ }^{\circ}+1 / a z_{2 i}=\lim _{t \rightarrow \infty} \xi_{i}\left(t, z_{i}^{0}\right), \quad i \in N_{k} \\
& y^{*}=y_{1}{ }^{\circ}+1 / a y_{2}^{\circ}=\lim _{i \rightarrow \infty} \xi_{i}\left(t, z_{i}^{\circ}\right), \quad i \in N_{m} \backslash N_{k} \\
& \alpha\left(z^{\circ}\right)=\max _{i \in N_{m}} \min _{\| v i}\left\{\alpha_{i}\left(z_{i}^{*}, v\right), \frac{\left(p_{i}, v\right)}{l_{i}-\left(p_{i}, v^{*}\right)}\right\}, \quad l_{i} \neq\left(p_{i}, y^{*}\right)
\end{aligned}
$$

Condition $\alpha\left(z^{\circ}\right)>0$ is sufficient for group pursuit completion. The pursuers' controls have the form indicated in $/ 3$ / (Example 3).

Examples 1 and 2 are solutions of problems of the type "cornered rat", "deadline game",
"lion and man" /12/ in the formulation given.

REFERENCES

1. KRASOVSKII N.N. and SUBBOTIN A.I., Positional Differential Games. Moscow, NAUKA, 1974.
2. SUBBOTIN A.I. and CHENTSOV A.G., Security Optimization in Control Problems. Moscow, NAUKA, 1981.
3. PSHENICHNYI B.N., CHIKRII A.A. and RAPPOPORT I.S., Effective method of solving differential games with many pursuers. Dokl. Akad. Nauk SSSR, Vol.256, 1981.
4. GRIGORENKO N.L., On a linear problem of pursuit by several objects. Dokl. Akad. Nauk SSSR, Vol.258, No. 2, 1981.
5. PSHENICHNYI B.N., CHIKRII A.A. and RAPPOPORT I.S., Pursuit by several controlled objects in the presence of phase constraints. Dokl. Akad. Nauk SSSR, Vol.259, No.4, 1981.
6. PONTRIAGIN L.S., Linear differential pursuit games. Mat. Sb., Vol.112, No. 3, 1980.
7. PSHENICHNYI B.N., Linear differential games. Autom. i Telemekh., No.1, 1968.
8. WARGA J., Optimal Control of Differential and Functional Equations. New York - London, Academic Press, Inc., 1972.
9. CHIKRII A.A., Nonlinear problem of evasion of contact with a terminal set of complex structure. PMM Vol. 39, No.1, 1975.
10. PSHENICHNYI B.N. and CHIKRII A.A., A differential avoidance game. Izv. Akad. Nauk SSSR, Tekhn. Kibernet., No. 1, 1977.
11. PONTRIAGIN L.S., On the theory of differential games. Uspekhi Mat. Nauk, Vol. 21, No.4, 1966.
12. ISAACS R., Differential Games. New York, J. Wiley and Sons, Inc., 1965.

[^0]: *) Prikl.Matem.Mekhan. 46,No.6,pp.906-913,1982
 **) Also see: Chentsov A.G., On certain aspects of the structure of differential encounterevasion games. Sverdlovsk, 1979, Deposited in VINrTI, No. 205-80,1980.

