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Effective methods are proposed for solving the group pursuit problemwith constraints
on the evader's state. The paper is closely related to the investigations in /i—
4/ (**) and is a development of the results in /5/ in the case of arbitrary linear
equations of motion of the evader.

1. Given the differential game

' =Adz+ o (u,v), 5SEY ywael,veV,ieN,={1, ..., m} (1.1

where E™ is a finite-dimensional Euclidean space, A; are square matrices of order n;, U, V
are nonempty compacta, the functions ¢; (¥; ¥) are continuous along variables collection. The
terminal set M consists of sets M*, i € N,, of form M;* = M+ M,, where M are linear
subspaces of E™, whileM; are closed convex sets from the orthogonal complements L; to M°
in space E™, and for i €& Ny \Ny, k< m, M; = {a,}, ¢/ is some vector from L,. Game (1.1)
is considered ended if for some >0 we have z; (t) = M,* for at least onei.

We say that the differential game (1.1l) can be ended from a prescribed position z° = (2,°,
++ . 3p’) no later than by the time I = T (z°) if measurable functions u; () = u; &,°, v () U,
t &[0, Tl exist such that the solutions of the equations

g =A@ 9 (g (), v{®), 20 =2z"° iEN,
for some i=i{v(-)}, hit onto set M; no later than at the instant ¢= T for any measurable

functions v () = {p{i): v () E V, t €0, T]}. Here the pursuers can use not only the instantane-
ous values of the evader's control but also the entire previous history wv(s), s [0, ¢l

2. Let m; be the operator of orthogonal projection from £E™ onto a subspace I;. Con~
sider the many-valued mappings

@, (t, v) = m exp (G4,) 9 (Uy, & (1) V).
D, ()= ﬂVfD. o)y PNy, t=20
TEE

where exp (t4;) is the fundamental matrix of the system 2z;” == 4;;,, and ¢g; (f) are certain meas-
urable functions taking values from the intexrval /0,l/. Let measurable functions &; (1), i €
Ny, and a number 7,> 0,8 (<0, 1], 1€ [0, Tol, exist such that the following conditions are
fulfilled.
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are nonempty for all (& N, Ty >t >0 (£ is the operation of geometric subtraction of sets

T AN
AR

Having fixed certain measurable selectors ;)& @ (), we set

bt ) =mexpEd)a + ot =) dv, 1SN, tI0, T
[}
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and denote
max (¢ 2> 0: { @yt — 1, ) — @it — 1)}

at, v a )= W @)=k z))AD) Bt 2EW, (@) (2.1)
VL, B n)EW ()
ieEN, Iy2tz2t>0,veV

Lemma 1. Let Conditions 1 and 2 be fulfilled, the mappings @ (U;, &; () ) be convex-
valued, @, (f) be a measurable selector of mapping ®,(f), v V. Then, if & (¢, z) E W, (1),

then
a; (¢, T, 2, v)= inf {C L) (— (p, @1 (& =N},
t b) DEI’I"(t.zi)[ oo (= P) : (2.2)

To)t}'t’}o, iEN),

where P, (t,2,) = {p € Li—Cw (p) + (P, & (¢, 3)) =1}, and Co,0 (), Cw,n (p) are the support
functions of the corresponding sets.

Proof. From Condition 1 follows the inclusion
Oesdit—1,9)—q(t—7)
for all »eV,Te>t>1>0, which is equivalent to the inequality
C'oia_r,u)(—P)+(p-;¢i('—-f))>0 VpsL (2.3)
From the property of the geometric subtraction operation it follows that the mapping Wi ()

is convex-valued /6/. The emptiness of the intersection in expression (2.1) is equivalent
to the inequality /7/

Co.(g_T ‘u)( —p)+ (P @ (6 — ) > (e E-‘ (£ 3‘)) - CW{(I) (P Vpe Ll

(-,

When (p, & (£, %)) —Cw, ¢ (P) <O the last inequality is fulfilled for any nonnegative e« since (2.3)
holds. If, however, (p,% (t, %)) — Cwye (p) >0, then, having set (o, & (4 2) — Cw, ) p) = 1, we obtain

Co;(:_t_ =D+ g t—>a
Hence follows formula (2.2). The following condition is assumed fulfilled for ie& N,\N;

Condition 3. The sets m; oxp (td;) 9, (Uy, V), i EN,, \ Ny , consist of unique points
@; (t, v) for fixed ¢, v, I'y>t>0,vEV. For i =N, \ N, we set
£ (t, 2) = n,exp (14) z (2.4
woal@g—§ta)=q(t—10), a*§( )
lou(t — T Mt ay=Ei(t, z))
To2t>1 >0, veEV

o (t, T, 2, V) = {

We denote
13
A(t, 2) =1 — inf max Su, @ Tz v(v))de
o) iEN,, §

T(@Ey=(t>0: A, 2)=0}

where v (:) is a function measurable on the interval [0, t] taking values from set V.

Theorem 1. Let Conditions 1—3 be fulfilled for differential game (1.1) and let T (2%
< T,. Then from a prescribed initial position z° it can be ended no later than by time T (2°).

Proof. Let v(x),v(r)EV,1< 10, T], T = T (z°) be some measurable function. We set

t t
R(T,t, 2% v(-))=1—max {?e]?vitsa‘ (T, %, 28, v (1) dr, iel{_l:’l:\xNHSa, {t, T, 25, v (1)) d-r}

Since A (7,0,2% v(-)) =1, while for ie=N, \ Ny @& ¥ &; (4, 2°) the function o, (t,1,2°, v) depends
continuously on ¢, we have that & (T, ¢, 2°, v (-))depends continuously on ¢ and from the defini-
ti(o;l) ofofunction A(t, z) it follows that an instant t, 0 <ty € T, exists such that (T, t,,
v())=0.

Let us indicate a method for choosing the controls for i& Ni. Let & (T, 2,°) € W, (I).
Then for 0< v <fy we choose the control u, (1) &€ U, and the function %, (%) & W, (T) from
the equation
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wyexp (T — ) Ay) ¢, (U; (x), & (T — D v(t)) — @ (T — 7) = (2.5)

-0y (Tr T zios v ("))(‘xl (1") - §£ (T’ zio))

The function &; (T, %, 2,°, v (7)) is measurable in 1T; therefore, on the strength of the Filippov-—
Castaing theorem /8/, the solvability of Eq.{2.5) in the class of measurable functions u; (1),

%; (¥), 0K 1t <#y follows from Conditions 1 and 2. For t, <7< T we set a, (T, %, 2°%v)=0
and we choose the control u;{1) from the resulting Eq.(2.5). If (7, 2,y W, (I) then we
set x; (1) = §; (T, 5°)and we choose the control u,; (v) from Eq. (2.5) with a zero right-hand side.
The representation

i

7043 (£) = 11, exp (4;) 2" + S g exp (2 - 7) 4y) @ (i (1), v (7)) dT, (2.6)
]

{E N,

follows from the Cauchy formula. If A (T, f., 2° v{-)) =0, then a number j exists such that one
of the following equalities is fulfilled:

%
IS a7 v 28 pieNde==0. ic=N. (2.7
1=\ a)(T, v, 27, v(x))dr =0, j=M (2.7
4
e
o -
1= oy lte v 20 (@) A1 =0, JEN\ N2 (2.9)
[4]

. ies .
§myexp (7' — %) 4) 93y (9), (T — ) (@) dr, { s (T =) e

from both sides of equality (2.6) with j=j, ¢t= T, as well as taking intc account the con-
trol selection law, we obtain

T
gy (N =8 (T2 57) (1 = § oy(To 7 22, v (e ) +
4]

T
$o,(7, 7 27 v (@) s () d +
0

T
§svjexp (T — ) 4) 9% (T — 7, 3y (1), (%)) d1
o

Hence with due regard to formulas {2.5), (2.7), to the convex-valuedness of mapping W;(T)and
to the property of the geometric subtraction operation, we cobtain mz; (7)€ M, Let j&
Nn\ Ny, Let us consider the case when a;5= E; (4, 2,7). By virtue of equality (2.8) and
Condition 3, from {2.4) we have

1
45—y lter 27) — § @1t — 7, D (1)) dr =0
or ay=mng;{te). If a;=§;{ts 25), then from equality {2.8) we obtain
te t,
(o= v@)ldr=0 or § gsts—7 0(m)dr=0
1] [}

Hence with due regard to the initial assumption and to formula (2.6} we obtain a; = nZ; (Z,).
3. We fix certain measurable selectors ¥; (f) of the many-valued mappings Wi(t), iE N, t &
[0, 7, and we set

s (t, 21) = B (& 2g) — % (B)

{max (B> 0: —Pnu(t, ) EB (7, V) =
B:(t, v, 2y, U) = @ (t—1), Mtz

1, ng{t z)==0
ieN, T, >t>s>0 veV
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Lemma 2. Let Conditions 1 and 2 be fulfilled, the mappings ¢;(U;, & (t)v) be convex-
valued, @;({f) and %;(f) be measurable selectors of mappings @, () and W, (f), respectively.
Then, if w; (¢, 2;) 5= 0, then

Bi(t, v, 2, )= Pielf {Cot—r,n(— P)+ (P, 91 (E =D}
@ gt 2=
ieN, Tozt>t>0,velV

The proof is analogous to that of Lemma 1.

For iENm\Nk we set gl (tr zi)Enl (t9 zl)r ﬁt (tv T, % V)E a; (t, Ty 2y U). We denote

0

8 @) ={t>0: pi, 2)=0}

t
bt ) =1—infmax (B, (t, 7 2,0 (1) dv

Theorem 2. Let Conditions 1—3 be fulfilled for the differential game (1.1) and let
8(z°) < T,. Then from a prescribed initial position z° it can be ended no later than by time
e (2°).

The proof is carried out by the scheme used to prove Theorem 1.

4, Let 0;(t,%),i = Ny, t»v >0 , be certain numerical functions. We consider the many-
valued mappings
F! (tv T Uh v) = ¢i (t_ Ty U) — O (tv T) W, (t)
Fyt, )= ﬂVF:(t, T, Uy, V), t>1>0, iSN
L =)

Let measurable functions e, (f) = [0, 1] , measurable nonnegative functions w; (#, T) and a number
To, iE Ny, Ty > t>1>0, exist so as to fulfil the following condition:

Condition 4. The sets F;(t,7) are nonempty for all iENx, Ty22 t 2 10,
We fix certain measurable selectors fi (¢, T) of mappings F,; (¢, t)and we set
t

Lt 2) = myoxp (t4) 2+ $ filt, v dv

°
We denote

max (7 > 0: -YQ (t’ Z{) EF{(t1 T, Uh v) —fi(t' '))
vty T, 3, V)= Li(t, 2) 540
7, Lt z)=0
iENy, Tozt>rc >0 veEV

Lemma 3. Let Conditions 2 and 4 be fulfilled, mappings ¢; (U;, & () V) be convex-valued,
fi(t, %) be a measurable selector of mapping F, (¢, v) . Then, if §, (s 2z) 30, then

Vi (t: Ty 24 v) = inf. [Coi(t-t, v} (— P) + (pv fl {t T)) +
@ {@, 20
@ (t, ) Cw,in(—~p)} L1EN, To2t=1>0, vEV

The proof is analogous to that of Lemma 1.
For iENm\Nk we set Cl (tv zi) = gl (ty 2(), i (tr T 2 U) = o (t, T, 3y U). We denote
¢
v (t, 3)=1 — inf max {t, ©, 2z, v(t)dr
(t3) .%%w )

P@E={>0 v( z)=0}

Theorem 3. Let Conditions 2—4 be fulfilled for the differential game (2.1) and let
I'=T ()< T, and

T
(T, ndi=1, i

0
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Then from a prescribed initial position 2° it can be ended no later than by time T (z°).
The proof is based on the ideas used to prove Theorem 1.

5. Letk=m=1, 1In all notation we omit the indices and we set &(f)=1. Let us
establish the connection between the pursuit plans presented in Sects. 2—4 and Pontriagin's
first direct method /6/.

Corollary 1. Let Condition 1 be fulfilled. Then in order that

t
nexp(tA)zEM—SQ(t—r)dt
[]
it is necessary and sufficient that a measurable selector ¢ (1) € ® (z), v <= [0, t], exist such
that E(t 3) EM.
From Corcllary 1 it follows, in particular, that

T <@
t
) ={t>0: nexp(tA)zEM—S‘I’(t—")dT}

Corollary 2. Let Condition 1 be fulfilled. Then in order that
1
{nexpyz+{@ =)ot} N M~
[]

it is necessary and sufficient that a measurable selector ¢ (1) = P (), 1= [0, #] and a vector
m & M exist such that w (4, 2) =0.

Corollary 3. Let Condition 4 be fulfilled. Then in order that
t
—:nexp(tA)zESF(t, 1)dr (5.1)
o
it is necessary and sufficient that a measurable selector f(¢ %) & F (¢, ), v &[0, t], exist such
that (¢, z) = 0. If furthermore
t
(o nar=1

L]

then the pursuit can be ended in time ¢ = 1?(2) prescribed by inclusion (5.1) from the initial

position z.

The proofs of Corollaries 1-3 follow from the constructions in Sects.2—4. Thus, the
plans in Sects.2 and 3 can, in particular, coincide with Pontriagin's first direct method, while
the plan in Sect.4 leads to a certain modification of it.

6. Let us consider the problem of pursuing an evader by a group of controlled cbjects,
in the situation when the evader cannot leave the confines of some open convex set, and let
us show that it is a special case of differential game (1.1). The motions of the pursuers and
the evader have the form
' =Ca+u, wel, znEL, icN (6.1)
y=By+v, veV, yskE*

where certain coordinates of the evader are constrained:
G={y (piy y)<lh ”Pi”=1’ lENm\Nk} (6.2)

The sets M,*, i< N,, are prescribed just as in game (1.1), in the spaces E" = E't X E’. The
pursuit process is considered ended if at least one of the pursuers catches the evader ({zi, y}
€ M* for some i€ Ny) or if the evader is forced to violate the constraints ((p;, ¥) = §

for some iE N, \\ Ny). We set

C; 0 u;
2= {z1, ¥} Ai=“0 Bl @1 (i V)= 0 +

2=y, Ai=B, g, v)=v
MP = {z2 (pi» 2) =0}, @i =1Up;, i€ Nn\ Ny

o) .
vhl lENk

By the same token the group pursuit problem (6.1)with constraints (6.2)is reduced to a constraint free
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problem of form (1.1). Such a reduction was used in /5/; an analogous method was applied earl-
ier in /9/ for an escape problem. The very rigid Condition 2 was present in /5/, reducing the
analysis essentially to a simple motion of the evader. Condition 3, replacing it, is fulfil-
led automatically.

7. Example 1. The pursuers and the evader move in accord with the equations
s=antu,|u|<l,iesN B
y=eat+o|ri<i,y=E
The set M:* consists of points {ezi.y}, such that Jz —y|< 8. The constraints on the evader's
coordinates are
=B py<h pnsEpl=1, s Na\ M}
We consider various cases.
1°. a<0,8>0,t=Ny. We apply the plan in Sect.2. Condition 1 is fulfilledwith ¢ ) =1.
Having set ¢ (1) =0, we obtain
B (t, ;) = exp (a?) 7, § & Ny
Since <0, at the instant
y* = ahn (s f0 7Y
we have &i{t,=m) e M*. This goal is reached with the aid of the control (1) = r(t), v & [0, 5%
Here the time y* coincides with the Pontriagin time by virtue of Corollary 1. Thus, each of

the pursuers independently catch the evader in finite time from any initial positions, even
without constraints (6.2).

27, aL0,8=0,1=N; From the method of invariant subspaces /10/ it follows that the
evader can avoid capture in the case of one pursuer and without constraints. By virtue of
Lemma 1 we have

% {8 %, %%, v} = exp (—7a) @i (5°, 2}
o (8% ) = [ 5° 72 (o, %)+ [0, 202+ 120 (4 — o WYY, L Ny
(Dy, exp (a (t — 7)) v)

o P Ll LA
T ) =g S e LS e\

Let the phase constraints be a polyhedral cone (=20, i & Np \ N3). We denote

o {z°} = max min o, {35 U
e ieanmmg{ 5 (3% vh

{2, v}
- (p(v z;)
Then the condition a(®)>»0 is sufficient for completing the group pursuit, and the pursuit
time is bounded by the quantity
af{z®)—a=a

L. B .1

and the pursuers’ controls are
w () =o (1) —a @&'o () zoia Npyv e [0, T ()

3°. a>30,8 =01 N i =0,isNn\ M. A sufficient condition for completion of pursuit
is the condition a{°) >4, and the pursuit time is bounded by guantity (7.1).
The case of simple motion {z= 0} was analyzed in /5/.

Example 2. (Pontriagin's check example with equal coefficients of friction}. The mo-
tions of the pursuers and the evader are described by the equations

i gy 2y = an bty a e S EL a2 2, w St i e Ny
W=y =antr,yunsE v]<1,eL0

The set M* consists of pairs {szy,y}, such that =z; =y, The constraints on the evader's geo-
metric coordinates (y) are of form {6.2). We set

B T py e g, 5y P Tgi o Yy £ S Niy S Yo B = U £ N\ Ny

We apply the plan in Sect.l. Condition 1 is fulfilled with g @y =1,ie Ny . Here o= 0,
and
& (¢, ,’io) =2 53 ey (1) 55 £ 28 N

& () =a"1(f — exp (—a?)) /11/, On the strength of Lemma 1
g, 3t l=alf —Te (& (8, 5°h v}y & {t, W) E0, te= Ny

{(Pp 1t — 1} 9) .
7 ¢ zio' v}= - (Pi- n ety ' Ei & B )+ lip‘, e Nm\N*
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We denote
2% =5,° + Yfazy, = }.l.lg gt 57 1eN,

y* =y’ + lfay,° = 321510 g (t %), ieN, \N,

{ (D V)

@ (z°) = max min {a, (z*, v), T_:(—pi’—”—‘)} v LBy v¥)

=N, pist

Condition a () >0 is sufficient for group pursuit completion. The pursuers' controls have
the form indicated in /3/ (Example 3).

Examples 1 and 2 are solutions of problems of the type "cornered rat", "deadline game",
"lion and man" /12/ in the formulation given.
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